ASO-Mediated DNM2 Knockdown for Centronuclear Myopathies

Engineer
Dynacure

Centronuclear myopathies (CNM) are a group of severe muscle diseases for which no effective therapy is currently available. We have previously shown that reduction of the large GTPase DNM2 in a mouse model of the X-linked form, due to loss of myotubularin phosphatase MTM1, prevents the development of the skeletal muscle pathophysiology. As DNM2 is mutated in autosomal dominant forms, here we tested whether DNM2 reduction can rescue DNM2-related CNM in a knock-in mouse harboring the p. R465W mutation (Dnm2RW/+) and displaying a mild CNM phenotype similar to patients with the same mutation.

To download a PDF copy of the presentation, click on the “LinkedIn SlideShare” icon located in the bottom-right corner of the slide-viewer. From the SlideShare landing page click the “Download” button to retrieve the file.

This Virtual Poster has been made available to the scientific community by Aurora Scientific, Inc.

Aurora Scientific, Inc.

Aurora Scientific supports the scientific community in its goal of research and discovery by providing precision instrumentation of the highest quality design, construction and functionality for Muscle Physiology, Material Science and Neuroscience applications.

Aurora Scientific, Inc.

Additional Content From Aurora Scientific, Inc.

Cut and Paste of Myosin Binding Protein-C in Striated Muscles

Cut and Paste of Myosin Binding Protein-C in Striated Muscles

Dr. Samantha Harris discusses the development of three new mouse models in her lab, engineered to target and replace specific myosin binding protein-C paralogs in muscle fibers and impact of their mutations on skeletal and cardiac muscle diseases.
Integrating Patient Engagement and Trainee Development in Pre-Clinical Research

Integrating Patient Engagement and Trainee Development in Pre-Clinical Research

Christopher Perry, PhD discusses how his laboratory aims to discover mechanisms by which metabolic dysfunction causes muscle weakness and apply these findings to develop new therapies for muscle disorders. Homira Osman, PhD provides a particular focus on leveraging scientific findings for practice and policy and linking trainees with patient communities.

Related Content